

COMPLETE POWER QUALITY SOLUTIONS

ABOUT US

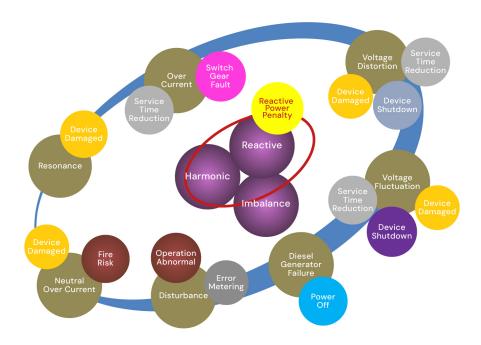
Activesine Electricals India Pvt Itd was established in the year 2023 with the wide vision in Power Quality Solutions Industry with the technology driven we believe that the future of our industry lies in innovation and effective R&D, which in turn helps one to push boundaries and eliminate borders. We at Activesine Electricals believe in this and therefore are constantly emerging with new products focusing on quality, safety, and affordability.

A RAPIDLY EMERGING PURE POWER SUPPLY SOLUTIONS PROVIDER

Activesine Electricals India Pvt. Ltd., based in Bengaluru serves as an industry pioneer, reputed as a pure power quality solutions provider. The company delves into research about power consumption, wastage, and losses incurred in commercial, IT, factory, or residential, offering clients solutions for fixing these issues and reducing wastage of power. Catering to the distinctive needs of diverse clients from varied industries spread across India, the company is dedicated to drive client satisfaction and success through its comprehensive suite of solutions and services.

WORLD-CLASS MANUFACTURING CAPABILITIES

At Activesine, we understand that reliable power quality is the cornerstone of operational efficiency. Our team of seasoned experts utilizes state-of-the-art equipment to provide you with unparalleled accuracy and insights.

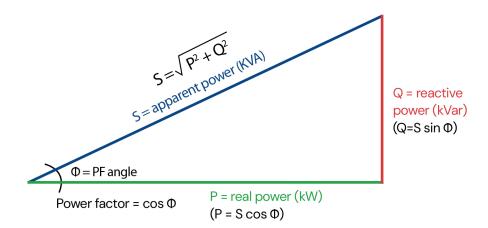

Unleash the potential of your systems as we develop deep into the intricacies of power quality, uncovering anomalies, harmonics and disturbances that might be hindering your performance. Whether you're seeking to optimize production, reduce downtime or ensure compliance, Activesine Electricals is your trusted partner in achieving unrivaled power quality analysis to experience the difference of precision and reliability.

Our seasoned experts conduct in-depth assessments of your power systems, analyzing parameters such as harmonics, voltage fluctuations, transients and disturbances. Activesine's robust manufacturing capabilities are built into a state-of-the-art facility situated in Bengaluru. The company has been certified with the ISO 9001-2015 certification for panel manufacturing in India, demonstrating its expertise and dedication to excellence and quality. Moreover, the firm is equipped with seasoned engineers with advanced knowledge and extensive and diverse experience in manufacturing high-quality APFC/AHF/SVG/HYBRID panels to suit diverse client needs.

DEDICATED TO BECOMING AN INDUSTRY LEADER, ACTIVESINE PRIORITIZES ALIGNING IT'S PRACTICES, SERVICES AND SOLUTIONS WITH PREVALENT INDUSTRY STANDARDS.

IMPACTS OF **POWER QUALITY:**

POWER FACTOR:


Electrical loads are often composed of more than just pure resistance, the combination of resistance and reactance in an AC system is called the impedance. Reactance comes in two forms: inductive and capacitive, both of which do not contribute to "useful" work on the power system.

Power Factor is a measure of how effectively incoming power is used in your electrical system (energy efficiency) and is defined as the ratio of Real (working) power to Apparent (total) power. **Real Power (kW)** is the power that actually powers the equipment and performs useful, productive work. It is also called Actual Power, Active Power or Working Power.

Reactive Power (kVAr) is the power required by some equipment (eg. transformers & motors) to produce a magnetic field to enable real work to be done. It's necessary to energise this equipment however it does not perform any productive work.

Apparent Power (kVA) is the vector sum of Real Power (kW) and Reactive Power (kVAR) and is the total power supplied through the mains that is required to produce the required amount of Real Power for the load. It is also known as the 'demand'.

Power factor is a way to characterize how much electrical power goes toward producing useful work such as light, heating, or machinery. Low power factor means a large amount of energy is being lost in the system in the form of wasted heat, which generally equates to higher energy bills and equipment degradation.

WHY TO CARE FOR **POWER FACTOR?**

Sources of Low PF

- * Induction motors of all types, particularly, when they are operated at reduced/ light loads.
- * Power transformers and voltage regulators.
- * Arc welders.
- * Choke coils and magnetic systems.
- * Synchronous motors
- * Distribution Transformers: The PF depends on its design, loading and unloading. Generally, the PF of an unloaded transformer is very low.
- * Fluorescent and discharge lamps, neon signs, etc

Effects of Low PF

- * Overloading of cables and transformer thus reducing the life of the Equipment.
- * Decreased/increased line and phase voltage at point of application on account of lagging/leading low power factor.
- * Inefficient operation of plant leading to power and energy loss.
- * Causes penalty charges if below some threshold.
- * Wastage of capital due to oversizing of cables transformers and switchgear
- * Reducing the power flow on transmission line.

HARMONICS:

In an electric power system, a harmonic of a voltage or current waveform is a sinusoidal wave whose frequency is an integer multiple of the fundamental frequency. Harmonic frequencies are produced by the action of non-linear loads such as rectifiers, discharge lighting, or saturated electric machines. The fundamental frequency is also called the 1st harmonic. Harmonics are an increasing problem in today's modern electrical system. The rapid uptake of sophisticated power electronics devices and non-linear loads has resulted in electrical networks rich in harmonic currents and voltage distortion. Non-linear loads draw current from the electrical supply that is non-sinusoidal.

The excess heat produced by harmonics can have detrimental effects on a power system.

Transformers are especially susceptible to damage caused by harmonics due to stray "eddy currents" which circulate in the iron core and produce excess heat.

Harmonics are identified by their frequency in multiples of the "fundamental" or main frequency (50Hz in the India). For example, the third harmonic in a 50 Hz system would be $150 \text{ Hz} \times 3 = 150 \text{Hz}$) and the 5th harmonic would be $250 \text{ Hz} \times 5 = 250 \text{Hz}$).

The magnitude of each harmonic frequency can be measured using power quality meters and are generally displayed in the form of a harmonic spectrum. Total harmonic distortion (THD) and total demand distortion (TDD) are sometimes used with power quality meters to simplify harmonic distortion as a single measurement rather than an entire spectrum.

SOURCES OF HARMONICS:

- * Main sources are Non-Linear Loads given as under Electronic Switching Power Converters
 - •Computers, Uninterruptible power supplies (UPS), Solid-state rectifiers
 - •Electronic process control equipment, PLC's, etc
 - •Electronic lighting ballasts, including light dimmer
 - •Reduced voltage motor controllers
- * Power Converters.
 - •Three-phase power converters
 - •VFD
- * Arcing Devices
- * Discharge lighting, e.g. Fluorescent, Sodium and Mercury vapor
- * Arc furnaces, Welding equipment, Electrical traction system Ferromagnetic Devices
- * Transformers operating near saturation level
- * Magnetic ballasts (Saturated Iron core)
- * Induction heating equipment, Chokes, Motors
- * Appliances TV sets, air conditioners, washing machines, microwave ovens, Fax machines, photocopiers, printers, etc.

EFFECTS OF HARMONICS:

- * Affect operation of sensitive equipment like control and monitoring devices
- * Overloading in Distribution System due to increase in RMS Current.
- * Harmonics cause additional losses (Joule effect) in conductors and equipment.
- * Derating of power sources (generators, transformers and UPSs) leading to over-sizing.
- * Oversizing of conductors on account of the flow of harmonic currents due to skin effect.
- * Reduced service life of equipment, Nuisance tripping of breakers and installation shutdown.
- * Higher neutral current

IEEE 519 STANDARD FOR VOLTAGE HARMONICS

Voltage Distortion Limits

Individual Voltage Distortion	Total Voltage Distortion THD (%)
3.0	5.0
1.5	2.5
1.0	1.5
	3.0 1.5

NOTE: High-voltage systems can have up to 2.0% THD where the cause is an HVDC terminal that will attenuate by the time it is tapped for a user.

IEEE 519 STANDARD FOR CURRENT HARMONICS

Current Distortion Limits for General Distribution Systems (120 V Through 69000 V)

		Individual H	larmonic Order (0	Odd Harmonics)		
/sc/L	<11	11≤h<17	17≤h<23	23≤h<35	35≤h	TDD
<20*	4.0	2.0	1.5	0.6	0.3	5.0
20<50	7.0	3.5	2.5	1.0	0.5	8.0
50<100	10.0	4.5	4.0	1.5	0.7	12.0
100<1000	12.0	5.5	5.0	2.0	1.0	15.0
>1000	15.0	7.0	6.0	2.5	1.4	20.0

Even harmonics are limited to 25% of the odd harmonic limits above.

Current distortions that result in a DC offset, e.g., half-wave converters, are not allowed.

All power generation equipment is limited to these values of current distortion, regardless of actual $/_{sc}/_{L}$

Where:

/sc = maximum short-circuit current at PCC.

/L = maximum demand load current (fundamental frequency component) at PCC.

TDD = Total demand distortion (RSS), harmonic current distortion in % of maximum demand load current (15 or 30 min demand).

PCC = Point of common coupling.

CALCULATION OF CAPACITOR RATING (KVAR):

MULTIPLYING FACTOR TABLE FOR CAPACITOR CALCULATION:

					Correc	ted Power	Factor				
Orig PF	0.80	0.82	0.84	0.86	0.88	0.90	0.92	0.94	0.96	0.98	1.00
0.50	0.982	1.034	1.086	1.139	1.192	1.248	1.306	1.369	1.440	1.529	1.732
0.52	0.893	0.945	0.997	1.049	1.103	1.158	1.217	1.280	1.351	1.440	1.643
0.54	0.809	0.861	0.913	0.965	1.019	1.074	1.133	1.196	1.267	1.356	1.559
0.56	0.729	0.781	0.834	0.886	0.940	0.995	1.053	1.116	1.188	1.276	1.479
0.58	0.655	0.707	0.759	0.811	0.865	0.920	0.979	1.042	1.113	1.201	1.405
0.60	0.583	0.635	0.687	0.740	0.794	0.849	0.907	0.970	1.042	1.130	1.333
0.62	0.515	0.567	0.620	0.672	0.726	0.781	0.839	0.903	0.974	1.062	1.265
0.64	0.451	0.503	0.555	0.607	0.661	0.716	0.775	0.838	0.909	0.998	1.201
0.66	0.388	0.440	0.492	0.545	0.599	0.654	0.712	0.775	0.847	0.935	1.138
0.68	0.328	0.380	0.432	0.485	0.539	0.594	0.652	0.715	0.787	0.875	1.078
0.70	0.270	0.322	0.374	0.427	0.480	0.536	0.594	0.657	0.729	0.817	1.020
0.72	0.214	0.266	0.318	0.370	0.424	0.480	0.538	0.601	0.672	0.761	0.964
0.74	0.159	0.211	0.263	0.316	0.369	0.425	0.483	0.546	0.617	0.706	0.909
0.76	0.105	0.157	0.209	0.262	0.315	0.371	0.429	0.492	0.563	0.652	0.855
0.78	0.052	0.104	0.156	0.209	0.263	0.318	0.376	0.439	0.511	0.599	0.802
0.80	0.000	0.052	0.104	0.157	0.210	0.266	0.324	0.387	0.458	0.547	0.750
0.82		0.000	0.052	0.105	0.158	0.214	0.272	0.335	0.406	0.495	0.698
0.84			0.000	0.053	0.106	0.162	0.220	0.283	0.354	0.443	0.646
0.86				0.000	0.054	0.109	0.167	0.230	0.302	0.390	0.593
0.88					0.000	0.055	0.114	0.177	0.248	0.337	0.540
0.90						0.000	0.058	0.121	0.193	0.281	0.484
0.92							0.000	0.063	0.134	0.223	0.426
0.94								0.000	0.071	0.160	0.363
0.96									0.000	0.089	0.292
0.98										0.000	0.203
1.00											0.000

 $kVAR_{required} = kW * (tan(cos^{-1}\Phi_{original}) - tan(cos^{-1}\Phi_{desired}))$

kVARrequired = multiplier * kW

THDi: total harmonic distortion of current.

THDv: total harmonic distortion of voltage.

$$THDi = \frac{I_H}{I_1} \qquad I_H = \sqrt{I_2^2 + I_3^2 + I_4^2 + \dots + I_n^2 + \dots}$$

$$THDv = \frac{V_H}{V_1} \qquad V_H = \sqrt{V_2^2 + V_3^2 + V_4^2 + \dots + V_n^2 + \dots}$$

 $I_{\rm H}$ is the RMS value of harmonic current,i.e the RMS value of nth order harmonic current WRT the fundamental current.

 V_H is the RMS value of harmonic current,i.e the RMS value of nth order harmonic current WRT the fundamental current.

EXPECTED HARMONICS

<u>Source</u>	Typical Harmonics*
6 Pulse Drive/Rectifier 12 Pulse Drive/Rectifier 18 Pulse Drive	5, 7, 11, 13, 17, 19 11, 13, 23, 25 17, 19, 35, 37
Switch-Mode Power Supply Fluorescent Lights Arcing Devices Transformer Energization	3, 5, 7, 9, 11, 13 3, 5, 7, 9, 11, 13 2, 3, 4, 5, 7 2, 3, 4
* Generally, magnitude decreases as harr H=NP+/-1	nonic order increases

i.e. 6 Pulse Drive - 5, 7, 11, 13, 17, 19,....

POWER QUALITY SOLUTION COMPARISON

Comparison between Capacitor Bank, SVG and APF

	·		
ltem	Capacitor Bank	SVG	APF
Harmonic Filtering	Unavailable	Upto 20& of rated capacity Eliminate 2 nd ~50 th harmonics	Eliminate 2nd~50th harmonics (selectable)
Reactive Power Compensation	Discretely compensate inductive reactive power only	Steplessly compensate both inductive and capacitive reactive power	
Imbalance Correction	Unavailable	Avai	able
Response Speed	slow, can't track dynamic reactive power (20ms~5s)	fast, can track dynamic reactive power (<0.1ms)	
Harmonic Resonance Problem	Potential resonance between capacitor and transformer sabotages power system stability.	Active compensation technolo from the p	0,
Output Ability	Actual output capacity is less than the rated capacity. Actual output capacity is the same as rated capacity.		he same as rated capacity.
Space	Consume larger space	Consume very less space	
Life spam	Limited life spam-Capacitor	Higher life s	pam - IGBT

AUTOMATIC POWER FACTOR & REAL-TIME POWER FACTOR CORRECTION PANEL

INTRODUCTION:

Majority of the loads in the industries are highly inductive in nature such as induction motors, welding equipments, arc furnaces and fluorescent lightings. There may be a few resistive loads for heaters and incandescent bulbs. Very rarely industries may have capacitive loads such as synchronous motors. Net industrial load is highly inductive causing a lagging power factor. If this poor power factor is left uncorrected, the industry will require a high maximum demand from Electricity Board and also will suffer a penalty for poor power factor.

These two factors of high kVA demand and penalty for poor factor will inflate the monthly Electricity Bill. Since Power Factor can be corrected to near unity there can be huge saving from the Electricity Bills. Standard practice is to connect power capacitors in the electrical network at appropriate places to compensate the inductive nature of the load.

BENEFITS OF POWER FACTOR IMPROVEMENT

- > Substantial reduction in kVA demand and avoids penalty for low Power Factor
- > Additional loads may be added for improved productivity without need for increased demand
- > Considerable reduction of Transformer and line losses Reduction in voltage drop resulting in better system voltage regulation
- Reduction in maintenance, capital cost and longer life of distribution equipment due to lesser current in the system
- > Reduction in voltage fluctuation and circuit reactance
- Reduction in reactive power demand from the supply system since PFC Panel compensates the reactive power of inductive loads
- ➤ Payback for the PF Panel is normally within 8 –12 months

ACTIVE SINE SOLUTION:

- > Calculated fixed capacitor banks with manual ON/OFF switch with or without de -tuned reactor
- Automatic Power Factor correction takes place with respect to load requirements through PF Controller and contactor Thyristor switching.
- Use of Capacitor duty contactors limit the inrush current during switching and enhance the life of the capacitor
- Intelligent Relay with Programmable 6/8/12 Stages
- Compartmentalised and Non Compartmentalised Design
- > Specially designed harmonic filter APFC & RTPFC panels
- > Can be designed as per Customer Requirements

BENEFITS OF APFC(RTPFC) SYSTEMS:

- Reduction of harmonic currents in the electrical network
- > Eliminates resonance condition
- Improvement of True Power Factor
- > Better voltage stability and regulation
- No derations of the transformers and motors due to harmonic losses
- Better utilisation of the electrical system
- > Good life expectancy for all the electrical and electronic components
- > Reduced downtime and hence higher productivity of the plant and system
- > efficiency at its best
- > Penalty by EB authorities for poor PF is avoided and hence reduced electricity bills

ACTIVESINE LV APFC/RTPFC Power Quality Solutions

FEATURES

- *Type Tested as per latest standard
- * Flexible Step Rating
- * Compartmentalized & Modular Compact Design
- * Inbuilt Intelligent Controller for Power Factor (PF) Improvement
- * Perfect Solution for Non-Linear Loads
- * IoT-Based Technology
- * Designed for Capacitor Duty Contactor | Thyristor Switching
- * Lower Power Consumption Due to Minimal Capacitor Losses
- * Solution Available with MPP | APP Capacitors
- * Optimized and Customized Design
- * Suitably Designed to Mitigate Harmonic Resonance & Amplification

ACTIVESINE AHF/SVG PANEL-HARMONIC MITIGATION & PF CORRECTION

\chi Iot Based Panel

FEATURES

- * IoT based monitoring and smart Panel
- * Featured with 3 level Topology
- * Ultra fast compensation
- * Proven performance on welding
- Step-less Reactive Power Compensation
- * 7/10" touch screen display
- Harmonic current capacity for SVG: 20% of the rated current from H2 to H25
- Multifunctional: Harmonic, reactive power and imbalance compensation
- * Harmonic Elimination Range: 2nd~50thorder (Selectable)
- High harmonic filtering rate: Upto 98%
- * Excellent reactive compensation: Highspeed, Precise (-0.99 PF £0.99), Step-less, Bi-directional (capacitive and inductance) compensation
- Excellent imbalance correction: Both negative and zero sequence, mitigates neutral current
- * Wide input voltage & frequency range, adapts to tough electrical environments
- * Low thermal loss (<3% of rated APF kVA), efficiency >97%
- * High stability: Infinite impedance to grid, avoids harmonic resonance problems
- * Flexible application: Modular design, embedded instandard or customized cabinet
- * Easy installation and maintenance: Plug-in installation for APF module replacement and expansion
- * Wide capacity range: 30~750A for a single cabinet, up 10 cabinets in parallel
- * Environmental adaptability: -10~55° Cambient temperature, compatible with diesel generator
- * Complete protection: Grid Over/Undervoltage, APF over current, over temperature and more. All faults are recorded in the event log, which is convenient for failure analysis
- * Waveform display functionon HMI: Display wave form of input Voltage, Grid
- * Display Harmonic current Histogram on HMI: Grid harmonic current and load
- * CTs' reversal auto correction can be setted on HMI, support grid side or load side current detection

GENERAL TECHNICAL PARTICULAR OF APFC /RTPFC:

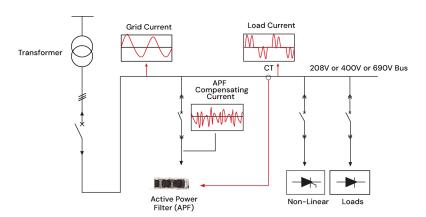
TECHNICAL DATA SHEET				
DETAILS	UNIT			
GENERAL				
APPLICATION	NA	AUTOMATIC POWER FACTOR IMPROVEMENT		
AMBIENT TEMPERATURE	DEG. C	40 Degree		
SWITCHGEAR & BUS BAR RATING				
RATED VOLTAGE	VOLT	415±10%		
FREQUENCY	Hz	50 ± 5%		
NO. OF PHASES	NA	3		
BUS BAR RATED CURRENT	AMP.	As per Rated KVAR		
ONE MINUTE POWER FREQUENCY VOLTAGE	kV	3		
EXPECTED POWER FACTOR	PF	As per Designed KVAR		
QUANTITY OF BANKS	NA	As per desined		
CONSTRUCTION REQUIREMENT				
TYPE OF MOUNTING	NA	FLOOR		
LOCATION	NA	INDOOR OUTDOOR		
MOC FOR OFFERED ENCLOSURE	NA	MOC-CRCA		
MOC THICKNESS	NA	FRAME-2.5 GLAND PLATE-3 DOOR -2 FOR LOAD BEARING MEMBER		
		COVER-1.6 PARTITION PLATE-1.6		
FORM OF SEPARATION	NA	3B - compartmentalized for front swgr section & non compartmentalized		
		for rear Capacitor/Reactor section.		
PROVISION OF BASE FRAME	NA	yes		
PAINT BOTH INSIDE AND OUTSIDE	NA	RAL 7032/RAL7035		
TYPE OF PAINT	NA	EPOXY Power Coating		
CABLE ENTRY	NA	BOTTOM/TOP		
FEEDER TYPE	NA	As Required ACB/MCCB		
BUS BAR SIZE	NA	AS per Current Rating.		
BUS BAR MATERIAL	NA	ALUMINIUM/COPPER		
EARTH BUS	ММ	MATERIAL OF CONSTRUCTION-ALUMINIUM		
IP RATING	NA	IP-4X/IP5X		
BUSBAR INSULATING MATERIAL	NA	HEAT SHRINKABLE PVC SLEEVES AND SHROUDS		
INDICATION AND ALARM	NA	AS PER SLD, ON/OFF/ TRIP/Incoming Power RYB/Auto-Manual/Trip circuit Healthy		
CLEARANCES IN AIR OF LIVE PARTS	ММ	PHASE TO PHASE : 25.4 PHASE TO EARTH : 19.4		
PANEL DIMENSIONS (L X D X H) IN MM	ММ	AS PER RATING OF THE PANEL		
OPERATING HEIGHT	ММ	A) MINIMUM (300mm) B) MAXIMUM (2200mm)		
COOLING	AIR NATURAL	Cooling fans with louvers & mechanical mesh with Air filter		
SWITCHING				
RATED VOLTAGE	VOLT	415		
RATED CURRENT	AMP	AS PER THE SLD		
RATED FAULT LEVEL	kA FOR 1 SEC	50		
TYPE OF SWITCHING	NA	AUTOMATIC WITH MANUAL OVERRIDE & PUSH BUTTONS		
SERIES REACTOR				
APPLICATION	NA	TO MINIMIZE INRUSH AND TO RESTRICT IMPACT OF HARMONICS UPTO FIXED LEVEL.		
VOLTAGE, FREQUENCY AND PHASE	VOLT HZ.	A) VOLTAGE-415		
		B) FREQUENCY-50		
		C) PHASE-3		

GENERAL TECHNICAL PARTICULAR OF SVG

	Rated Voltage	AC 2	08 V	AC 400 V		
	Input Voltage Range	AC 166~250 V	AC 166~250 V	AC 228~456 V	AC 228~480 V	
	Electric Connection	3P4W	3P3W	3P4W	3P3W	
	Rated Capacity per Module	25 kvar	/ 50 kvar	50 kvar /	100 kvar	
	Rated Current per Cabinet	25~350 kvar (Mo	dule combination)	50~700 kvar (Mo	dule combination)	
	Rated Frequency		50(60) H	Hz ± 10%		
	Input Voltage THD Range		≤ 1	5%		
	Redundancy	Each modul	e is an independent	reactive compensa	ation system	
	Reactive Power Compensation Capability	Bo	th inductive and cap	pacitive reactive po	wer	
Electrical Specification	Reactive Power Compensation Performance	Cosφ ≥ 0.99	after compensation	(If the SVG capacit	y is sufficient)	
Specification	Imbalance Correction Capability		Mitigate negative a	and zero sequence		
	Harmonic Elimination Range		2 nd ~25 th orde	er (Selectable)		
	Harmonic Current Capacity			ed current		
	Full Response Time		< 10) ms		
	Instant Response Time			0 us		
	Thermal Loss		≤ 3% of SVG r			
	Output Current Limitation			6 rated capacity)		
	Parallel Expansion (System)		Up to 10 Racks (7 m	1 37)	
	MTBF			00 hours	,	
	Control Frequency 30 kH					
	Controller	DSP + FPGA				
Control	CT Position			or Load side		
Technology	echnology Waveform Display		Input Voltage waveform, Grid current waveform, Load current waveform and SVG current waveform			
	Harmonic Current Histogram Display	Grid harmonic current and load harmonic current				
	Communication	Modbus RTU (RS-485), Modbus TCP/IP (Ethernet)				
	IP Grade of Cabinet		IP20, IP30, IP54, IP			
	Cooling Method			ced air cooling		
Physical	Noise Level		· ·	1 m (Module)		
Specification	Dust Filter	Optional				
	Dimension	Refer to SVG model table				
	Weight			model table		
	Ambient Temperature	-10~55°C				
Environmental Requirement	Relative Humidity	0~95% (No condensation)				
	Altitude	≤ 1000 m (Rated capacity), 1000~3000 m (Derating 1% per 100 m)				

GENERAL TECHNICAL PARTICULAR OF AHF

	Rated Voltage	AC 2	208 V	AC 40	00 V	AC 690 V		
	Input Voltage Range	AC 166~250 V	AC 166~250 V	AC 228~456 V	AC 228~480 V	AC 384~880 V		
	Electric Connection	3P4W	3P3W	3P4W	3P3W	3P3W		
	Rated Current per Module	50 A 75 A	100 A 150 A	30 A 50 A 75	A 100 A 150 A	100 A		
	Rated Current per Cabinet		750 A ombination)	30~75 (Module cor		100~500 A (Module combination)		
	Rated Frequency			50(60) Hz ± 10	%			
	Input Voltage THD Range			≤ 15%				
	Redundancy		Each mod	dule is an independen	t filtering system			
	Harmonic Elimination Range			2 nd ~50 th order (Sele	ectable)			
Electrical	Harmonic Filtering Degree							
Specification	Harmonic Filtering Performance	Filter up to 98% harmonics at rated load, THDv < 3%, THDi < 5% after filtering (Precondition: The grid background THDv shall be less than 1% under no-load condition.)						
	Reactive Power Compensation Capability	(11000		luctive and capacitive		a containin,		
	Reactive Power Compensation Performance	Cosφ ≥ 0.99 after compensation (If the APF capacity is sufficient)						
	Imbalance Correction Capability	Mitigate negative and zero sequence						
	Full Response Time			< 10 ms				
	Instant Response Time		< 100 us					
	Thermal Loss	≤ 3% of APF rated capacity						
	Output Current Limitation	Automatic (100% rated capacity)						
	Parallel Expansion (System)	Up to 10 Racks (7 modules per cabinet)						
	MTBF	> 100,000 hours						
	Control Frequency	30 kHz						
	Controller			DSP + FPGA				
Control	CT Position			Grid side or Load				
Technology	Waveform Display	Input Voltage	waveform, Grid	current waveform, Lo waveform	ad current wavefor	m and APF current		
	Harmonic Current Histogram Display		Grid harm	onic current and load	l harmonic current			
	Communication		Modbus R	TU (RS-485), Modbus	TCP/IP (Ethernet)			
	IP Grade of Cabinet		IP20,	IP30, IP54, IP55 or c	ustomization			
	Cooling Method			Intelligent forced air	cooling			
Physical	Noise Level		< 65 dB(A) @ 1 m (Module)		< 70 dB(A) @ 1 m (Module)		
Specification	Dust Filter			Optional				
	Dimension			Refer to APF mode	l table			
	Weight			Refer to APF mode	l table			
	Ambient Temperature			-10~55°C				
	Relative Humidity			0~95% (No conden	sation)			
Environmental Requirement	Altitude	≤ 1	000 m (Rated ca	apacity), 1000~3000	m (De-rating 1% per	· 100 m)		


APF Principle

Active Sine's PQC Series APF is connected in parallel with non-linear loads, & uses one set of current transformers (CT) to detect the load current. It calculates each order harmonic current by FFT algorithms in its DSP microchips, and then generates a compensating current with the same amplitude but opposite phase angles to the detected harmonic current, which cancels out the original load harmonics.

The PQC series APF not only eliminates harmonic current from the load side, but it also mitigates harmonic voltage caused by harmonic currents. The APF system can also improve power factor (PF) and correct load imbalances in the power system.

Note:CT is a critical part of the APF system, and it can be purchased by users themselves, following Active Sine's suggestions on CT specification.

APF Module and Cabinet Solutions

According to cable terminal type, a modular APF can be divided into two types:.

- •Drawer type modular APF (adding pluggable accessories on power cable terminals)
- •Mixed fixed type modular APF (Power cables are fixed from rear side, Signal cables are fixed from front side)

HMI has two types:

- •7" HMI
- •10" HMI

APF modules and HMI panel can be embedded in Active Sine's standard APF cabinet or a customized cabinet. There are breakers, cable terminals and Surge Protection Device (SPD) in the APF cabinet. Active Sine can supply IP30, IP42, IP54 or customized solutions.

Wall-mounted APF Solutions

Active Sine's Wall-mounted APF can be installed on a wall, which is suitable for low rating applications, and wall-mounted type HMI can be installed on the wall-mounted APF module, along with a mounting bracket to provide support and protection. Active Sine can supply IP30, IP42, IP54 or customized solutions.

Combined wall-mounted IP30 APF system

IIntegrated wall-mounted IP30 APF system

Wall-mounted IP54 APF system

BREAKER, POWER CABLE, CT SELECTION FOR AHF & SVG

1. Breaker & cable selection for AHF & SVG

50A AHF PM QUANTITY	AHF Rated Current(A)	MCCB Rated Current(A)	Wirediameter of R-,S-,T-,N-phase	PE wire diameter	Endurable Temperature
1	50	80A	35mm²	25mm²	70° C
2	100	160A	70mm²	35mm²	70° C
3	150	250A	95mm²	50mm²	70° C
4	200	315A	150mm ²	70mm²	70° C
5	250	400A	2x95mm²	95mm²	70° C
6	300	500A	2x120mm²	120mm²	70° C
7	350	630A	2x150mm ²	150mm²	70° C
75A AHF PM QUANTITY	AHF Rated Current(A)	MCCB Rated Current(A)	Wirediameter of R-,S-,T-,N-phase	PE wire diameter	Endurable Temperature
1	75	125A	50mm²	35mm²	70° C
2	150	250A	95mm²	50mm²	70° C
3	225	400A	185mm²	95mm²	70° C
4	300	500A	2x120mm²	120mm ²	70° C
5	375	630A	2x150mm²	150mm²	70° C
6	450	800A	2x185mm²	185mm²	70° C
7	525	900A	2x240mm ²	240mm²	70° C
100A AHF PM QUANTITY	AHF Rated Current(A)	MCCB Rated Current(A)	Wire diameter of R-,S-,T-,N-phase	PE wire diameter	Endurable Temperature
1	100	160A	70mm²	35mm²	70° C
2	200	315A	150mm²	70mm²	70° C
3	300	500A	2x120mm ²	120mm ²	70° C
4	400	800A	2x150mm ²	150mm²	70° C
5	500	800A	2x240mm²	240mm²	70° C

QUANTITY	SVG Rated Capacity (kvar)	MCCB Rated Current(A)	Wire diameter of R-,S-,T-,N-phase	PE wire diameter	Endurable Temperature
1	50 kvar	100A	35mm²	16mm²	70° C
2	100 kvar	200A	70mm²	35mm²	70° C
3	150 kvar	315A	150mm²	70mm²	70° C

NOTE:

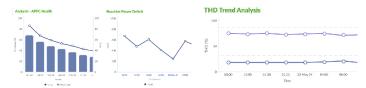
For 3P3W APF, there're cooling fans in the cabinet, and rated voltage of these fans is AC220V, so a 1.5 mm² cableshould be connected to 3P3W APF cabinet's Neutral terminal powering AC220V fans in the cabinet.

2. CT Selection

CT Ratio	xxx:5A,xxx>1.7*load current(RMS)	
CT accuracy	0.5 class	
CT burden	1~2 modules>=10VA 3~4 modules>=15VA 5~7 modules=20VA	

Reactive Energy APFC Panel Monitoring and Power Quality

Demand and Supply Analysis

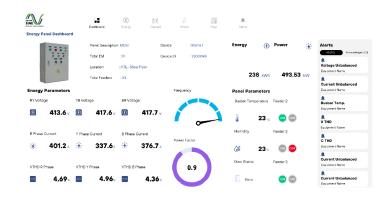

- Know whether the current APFC panel can meet the required reactive power (kVAR) demand.
- Track reactive power demand pattern to match it with capacitor step sizes.
- Get visibility of the actual capacity of the APFC panel, factoring in loss of capacitance due to aging.
- Prevent premature loss of capacitance through proactive temperature management.

Ensuring APFC panel is always healthy and Power factor is maintained.

3 10% improvement in efficiency | 6 Months payback

Power Quality Analysis

- Perform granular Total Harmonic Distortion [THD] analysis.
 - Time series analysis.
 - · Spectrum analysis.
 - VTHD, I THD analysis.
- Identify key loads contributing to the THD.
- · Identify filter requirements.
- Monitor performance before and after filter installation.


LT Panel Monitoring

Remote Monitoring of LT panels

- Remotely monitor essential performance and safety
 -related parameters of LT panels.
 - · Electrical parameters e.g.
 - Safety-related parameters e.g. Busbar temperature, Humidity & Panel door status
- Multi-site multi-panel hierarchy.
- Proactively prevent:
 - Severe causalities, e.g., short circuit or loose connections.
 - Rust and dust accumulation.

Effective manpower utilization, reliable operations and reduced breakdowns

95% reduction in unplanned downtime | 15 Months payback

Busbar Temperature and Humidity

Proactive busbar monitoring

- Realtime busbar joint temperature and humidity monitoring.
- Monitor multiple sites in a single dashboard.
- Drilldown view of every level with live parameters.
- Color coding to identify abnormalities.
- Alerts and Warnings.
- Thermography analysis and predictive analysis.

Insights for proactive maintenance resulting in no breakdowns, no SLA penalties, and manpower saving

95% reduction in unplanned downtime, no need to conduct thermographic analysis | 12 Months payback

Calculate Power Factor Penalty

Power factor (PF) is a measure of how effectively electrical power is being converted into useful work output. A power factor below 0.90 can lead to penalties from electricity companies because it indicates inefficient use of electrical power.

Here's how these penalties are typically calculated:

Steps to Calculate Power Factor Penalty

1.Determine Actual Power Usage: Identify the total kWh (kilowatt-hours) consumed during the billing period.

2.Calculate Apparent Power: Calculate the apparent power (kVA) using the formula:

Apparent Power (kVA) = Real Power (kW)
Power Factor (PF)

3.Identify the Contractual Power Factor: Most electricity companies have a specified contractual power factor, often 0.90. If the actual power factor is below this, penalties may apply.

4. Calculate the Penalty:

- Determine the kVA Demand: This is often the maximum apparent power used during the billing period.
- Calculate the Adjusted kVA Demand based on the contractual power factor:

Adjusted kVA = $\frac{\text{Real Power (kW)}}{0.90}$

- Calculate the Penalty: Some companies charge a penalty based on the difference

between the actual kVA and the adjusted kVA. The formula may look like this:

Penalty = (Adjusted kVA -Actual kVA) × Penalty Rate

- The penalty rate is specified in the utility's tariff schedule.

Example Calculation

•Real Power (kW): 100 kW •Actual Power Factor: 0.80

•Contractual Power Factor: 0.90

•Penalty Rate: ₹10 per kVA

1.Calculate Apparent Power:

Apparent Power= 100kW/0.80 =125kVA

2.Calculate Adjusted kVA:

Adjusted kVA = $\frac{100kW}{0.90}$ $\approx 111.11kVA$

3.Calculate the Penalty:

Penalty=(111.11 kVA-125 kVA)×10=-138.89 (No penalty since actual is higher)

If the actual kVA was lower, then you would calculate the penalty accordingly.

Note***

Electricity companies typically have specific formulas and rates for calculating power factor penalties, so it's important to refer to the utility's tariff schedule for exact rates and conditions. Regular monitoring and adjustment of power factor can help avoid these penalties.

This is to certify that Quality Management System of

ACTIVESINE ELECTRICALS INDIA PRIVATE LIMITED

30/66, THIRUPALYA VILLAGE, ELECTRONIC CITY PHASE – 1, BOMMASANDRA INDUSTRIAL ESTATE, BENGALURU, 560099, KARNATAKA, INDIA

Is in accordance with the requirements of the following standard

ISO 9001:2015

(Quality Management System)

for the following scope

MANUFACTURING OF POWER QUALITY SOLUTION PRODUCT i.e AUTOMATIC/REAL TIME POWER FACTOR CORRECTION PANEL, ACTIVE HARMONIC FILTER, STATIC VAR GENERATOR PANEL, HYBRID PANEL (PFC+AHF, PFC+SVG, PFC+AHF+SVG, AHF+SVG), SERVO STABILIZERS, ISOLATION TRANSFORMER.

(IAF CODE 19 NACE CODE 33.13, 33.14)

KSRQA2501258530

Certificate Number

Initial Registration Date : 30-01-2025 Certificate Expiry Date : 29-12-2027 2-18 Surveillance Date : 30-12-2025 2-18 Surveillance Date : 30-12-2026

This certificate remains the property of KSR and must be returned to KSR on Cancellation or Suspension of the certificate validity of the certificate is subject to successful completion of surveillance audits. Further clarification regarding the scope of this certificate and the applicability of standard may be obtained by consulting the Organization

To verify certificate, visit at : www.ksrcertification.in ADDRESS :: FIRST FLOOR, G-331, SECTOR – 63, NOIDA -201301, INDIA

Our Achievement

ACTIVESINE ELECTRICALS

and obstance and devertee superviscous from treatment was divertee superviscous from treatment and the production methods are recommended to the community of the community of

ENERGING PURE POWER SUPPLY SOLUTIONS PROVIDER

World-Class Manufacturing
appolities

Compositive of the continuation of the co

Activesine Electricals. Empowering Energy Efficiency

ACTIVE SINE SIGN OF EXCELLENCE

OUR SOLUTIONS:

- O Load study & Harmonic analysis
- O Capacitor health checkup
- Automatic Power Factor Correction Panel (APFC)
- Real Time Power Factor Correction Panel (RTPFC)
- Active Harmonic Filter Panel (AHF)
- Static VAR Generator Panel (SVG)
- Hybrid Panel (COMBINATION)

Building No./Flat No.: 30/66
Road/Street: Thirupalya Village, Electronic City Phase - 1
Locality/Sub Locality: Bommasandra Industrial Estate
City/Town/Village: Bengaluru, District: Bengaluru Urban, Karnataka-560099
Email - sales@activesine.com
Website - www.activesine.com